Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

I giocatori di vertice non sempre hanno la frequenza di ace più alta

ULTIMI ARTICOLI

Venti non vuol dire sempre venti

Pubblicato il 12 ottobre 2020 su TennisAbstract - Traduzione di Edoardo Salvati // C’è sempre più traffico in cima...

La fortuna del sorteggio: Roland Garros 2020 (donne)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Come per gli uomini, anche per...

La fortuna del sorteggio: Roland Garros 2020 (uomini)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Da diversi anni ormai eseguo simulazioni...

Cosa succede al ritmo di gioco con le nuove regole imposte dalla pandemia

Pubblicato il 31 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // La pandemia COVID-19 ha imposto agli...

Che valore assegnamo ai tornei Masters o Premier vinti nella bolla?

Pubblicato il 30 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Il tennis è ripartito, ma molti...

Mettere un asterisco accanto agli US Open è prematuro, e forse del tutto sbagliato

Pubblicato il 19 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Ci saranno diverse assenze di alto...

Il circuito femminile post COVID-19 sta rientrando alla normalità

Pubblicato il 17 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Negli ultimi due tornei femminili, abbiamo...

Il sospetto che Venus e Serena debbano giocare contro troppo spesso è fondato?

Pubblicato il 12 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Nel torneo di Lexington di questi...

Effetti della pandemia nel torneo di Palermo?

Pubblicato il 10 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // È più difficile fare previsioni sullo...

Elo ai tempi del COVID-19

Pubblicato il 2 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Il tennis è ripartito, ma nessuno...

ULTIMI ARTICOLI

Pubblicato il 17 giugno 2018 su sportsbrain – Traduzione di Edoardo Salvati

// Quest’analisi prende spunto dall’articolo di David Robinson sulla stima empirica di Bayes, un metodo statistico utilizzato per stimare un grande numero di percentuali. Qui l’idea è di prevedere il numero di ace sulla base del numero di game al servizio giocati in una determinata partita.

Entrando nel dettaglio, si definisce la frequenza di ace di un giocatore come il numero di ace diviso per il numero di game al servizio in una partita. Per la stima della frequenza di ace, si può usare uno stimatore empirico di Bayes mediante una distribuzione Beta. Per chiarezza, la distribuzione Beta è una famiglia delle distribuzioni di probabilità continua definita da due parametri positivi alfa e beta nell’intervallo unitario [0,1].

Definizione dello stimatore e dei parametri

Il primo passo in una stima empirica di Bayes è la definizione dello stimatore Beta a priori rispetto ai dati delle partite a disposizione (dall’inizio della stagione 2016 fino al 28 maggio 2018). L’immagine 1 mostra la densità della frequenza di ace dei vincitori in partite terminate in tre set.

IMMAGINE 1 – Distribuzione della frequenza di ace dei vincitori in partite di tre set.

Serve anche selezionare gli “iper-parametri” alfa e beta per il modello Beta che, in questo caso, hanno un valore rispettivamente di 1.76 e 10.83. Si può poi aggiornare la distribuzione Beta con i dati delle singole partite, vale a dire la frequenza degli ace per ciascun giocatore.

Applichiamo ora i parametri alfa e beta per provare a stimare la frequenza di ace nel caso un giocatore avesse servito cinque ace in dodici game al servizio. La modifica ai parametri alfa e beta cambia il modo in cui il modello si adatta ai dati a disposizione. Noti i valori di alfa e beta e la distribuzione Beta possiamo ottenere una stima della frequenza di ace di un giocatore come segue:

5 + alfa / 12 + alfa + beta = (5+1.76/12+1.76+10.83) = 0.274

Vale a dire, la stima della frequenza di ace per questo giocatore sarebbe del 27.4%. Il grafico di immagine 2 suggerisce che il modello Beta creato ha stimato con accuratezza la frequenza di ace sulla base dei dati dalle partite.

IMMAGINE 2 – Stima della frequenza di ace (asse delle X) di ciascun giocatore rispetto alla frequenza effettiva (asse delle Y)

Più ace non portano per forza a una classifica di vertice

La tabella elenca le prime 20 stime di frequenza di ace e la relativa frequenza effettiva usando la distribuzione Beta a priori per la stima della frequenza di ace della singola partita.

Troviamo una combinazione di giocatori noti e meno noti. Non sorprende la presenza di John Isner (1.49 di frequenza ace effettiva) e Ivo Karlovic (0.74 di frequenza stimata) tra i più alti valori stimati dal modello, considerando la loro efficacia al servizio.

Questi nomi però dimostrano che un’alta frequenza di ace non necessariamente si traduce in una classifica di vertice. Rafael Nadal e Roger Federer non collezionano ace a profusione, ma si può dire che siano stati probabilmente i due giocatori di massimo vertice negli ultimi dieci anni.

Complessivamente, il modello Bayesiano tende a una leggera sottostima della frequenza effettiva di ace di ciascun giocatore, ma è un buon metodo di stima, a cui sarà utile rivolgersi nella previsione di altre statistiche di tennis in futuro.

Il codice dell’analisi è disponibile qui. ◼︎

Elite Tennis Players Don’t Always Have the Highest Ace Rates

DELLO STESSO AUTORE

I giocatori di vertice non sempre hanno la frequenza di ace più alta

Pubblicato il 17 giugno 2018 su sportsbrain - Traduzione di Edoardo Salvati // Quest’analisi prende spunto dall’articolo di David...

La fatica è un fattore anche nel tennis?

Pubblicato il 27 ottobre 2017 su sportsbrain - Traduzione di Edoardo Salvati // Valutazioni e pronostici sulle prestazioni di...

Come la superficie incide sul rendimento dei giocatori

Pubblicato il 17 aprile 2018 su sportsbrain - Traduzione di Edoardo Salvati // I tornei della prima...

I giocatori più giovani hanno un rendimento migliore nelle partite più lunghe

// Pubblicato il 9 giugno 2017 su sportsbrain - Traduzione di Edoardo Salvati Il tennis è uno sport da...

Un modello per il confronto tra tornei dei primi due mesi di stagione

Pubblicato il 9 aprile 2018 su sportsbrain - Traduzione di Edoardo Salvati // In media, i giocatori...