Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Una valutazione degli effetti generati dalle situazioni di punteggio

ULTIMI ARTICOLI

È tornata la discesa a rete?

Pubblicato il 2 ottobre 2020 su StatsOnTheT - Traduzione di Edoardo Salvati // Se guardando il Roland Garros 2020...

Venti non vuol dire sempre venti

Pubblicato il 12 ottobre 2020 su TennisAbstract - Traduzione di Edoardo Salvati // C’è sempre più traffico in cima...

La fortuna del sorteggio: Roland Garros 2020 (donne)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Come per gli uomini, anche per...

La fortuna del sorteggio: Roland Garros 2020 (uomini)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Da diversi anni ormai eseguo simulazioni...

Cosa succede al ritmo di gioco con le nuove regole imposte dalla pandemia

Pubblicato il 31 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // La pandemia COVID-19 ha imposto agli...

Che valore assegnamo ai tornei Masters o Premier vinti nella bolla?

Pubblicato il 30 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Il tennis è ripartito, ma molti...

Mettere un asterisco accanto agli US Open è prematuro, e forse del tutto sbagliato

Pubblicato il 19 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Ci saranno diverse assenze di alto...

Il circuito femminile post COVID-19 sta rientrando alla normalità

Pubblicato il 17 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Negli ultimi due tornei femminili, abbiamo...

Il sospetto che Venus e Serena debbano giocare contro troppo spesso è fondato?

Pubblicato il 12 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Nel torneo di Lexington di questi...

Effetti della pandemia nel torneo di Palermo?

Pubblicato il 10 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // È più difficile fare previsioni sullo...

ULTIMI ARTICOLI

Pubblicato il 6 ottobre 2017 su StatsOnTheT – Traduzione di Edoardo Salvati

// Una particolare situazione di punteggio che appare sul tabellone può incidere sulla prestazione di un giocatore? Questo articolo analizza come misurare gli effetti delle situazioni di punteggio e identifica alcuni giocatori tra quelli di vertice che più ne sembrano soggetti e altri che invece paiono impassibili.

Qualunque appassionato di tennis si è trovato almeno una volta a pensare che un giocatore abbia avuto il così detto “braccino”, o non sia stato in grado di gestire la tensione del momento. Diverse definizioni di pressione psicologica utilizzate nello sport condividono l’idea di fondo che la prestazione di un giocatore possa essere influenzata dal punteggio.

Un esempio evidente di questo concetto si è verificato nel primo turno del torneo di Pechino 2017 tra Lucas Pouille e Rafael Nadal. Dopo aver vinto il primo set 6-4, Pouille era in corsa per ottenere la sua sesta vittoria in carriera contro un giocatore dei primi 10, portando Nadal al tiebreak del secondo set. Dopo aver sprecato due match point, indietro 6-7 nel punteggio ha servito la seconda in rete, per il suo unico doppio fallo in tutto il set, regalando così il tiebreak a Nadal. È difficile non essere tentati dal pensiero che Pouille abbia subito la pressione imposta dal punteggio.

Qualsiasi momento di una partita è passibile di interpretazioni varie e, per molti, questo è il lato affascinante del tennis. Per giungere a conclusioni su comportamenti sistematici di rottura sotto pressione o di innalzamento del livello di gioco in circostanze di punteggio sfavorevole, serve un’analisi attenta che ne dia dimostrazione numerica.

Come si possono misurare quindi gli effetti generati dalle situazioni di punteggio?

Esistono diversi modi. Alcuni studiosi hanno verificato l’effetto delle palle break, altri hanno considerato come sulla prestazione di un giocatore incida l’importanza del punto. In una relazione per la Sloan Sports Conference 2016, anche io ho analizzato queste e altre specifiche situazioni partita.

Più recentemente, ho cercato di comprendere quali dinamiche di rendimento si possano verificare quando siano state considerate tutte le combinazioni emergenti da un game normale (ad esempio 0-0, 30-0, 30-30, etc). Si può intuire che l’incontro tra gli aspetti psicologici che un giocatore deve affrontare sotto pressione e le variazioni tattiche legate all’alternanza di parità e vantaggi restituisca risultati degni di nota.

Effetto di selezione del punteggio

Se un giocatore affrontasse ciascun punto a prescindere dal suo contesto, si potrebbe semplicemente pensare di confrontare i punti vinti per qualsiasi punteggio considerato (ad esempio 30-30) con la media complessiva di punti vinti. Se dovesse emergere una significativa differenza statistica, saremmo probabilmente di fronte a un effetto dettato dalla situazione di punteggio.

C’è però un’insidia nell’utilizzare questa metodologia su numerose partite, quella cioè rappresentata dal fatto che gli avversari cambiano. Ipotizzare che un giocatore giochi come mediamente faccia in tutte le circostanze di 30-30 è valido solo se quel giocatore gioca esattamente contro quello stesso avversario in situazioni di punteggio di 30-30 con la stessa frequenza con cui ha giocato le altre situazioni di punteggio.

Ma quanto è probabile che sia così? Non è più facile vedere il problema chiedendosi se qualsiasi avversario di Nadal abbia la stessa possibilità di portarlo sul 30-30 quando Nadal è al servizio? Se la risposta è ‘no, ovviamente’, si dovrebbe allora apprezzare l’effetto di selezione dell’avversario introdotto dalla scelta di specifiche circostanze di punteggio.

Quanto può incidere?

Se a questo punto vi steste chiedendo quanto possa incidere l’effetto, date uno sguardo all’immagine 1, che mostra i punti giocati al servizio da Nadal contro molteplici avversari per le partite del circuito maggiore dal 2011 a oggi. I pallini blu rappresentano i punti giocati sullo 0-0, i pallini arancioni i punti giocati sul 40-40 o sulle altre parità.

Non solo si osserva come pochi giocatori giochino contro Nadal lo stesso numero di primi punti del game e di punti sulla parità, ma anche come gli avversari più forti, Novak Djokovic o Stanislas Wawrinka ad esempio, abbiano giocato più punti sulla parità contro Nadal della maggior parte degli altri avversari.

IMMAGINE 1 – Frequenza di primi punti e di situazioni di parità di Nadal

Se quindi confrontiamo semplicemente la media punti vinti da Nadal al servizio su situazione di parità contro la sua media complessiva, la differenza ottenuta dipenderà da un misto di effetto dovuto all’avversario e, probabile, effetto dovuto al punteggio, da cui sarà difficile derivare un senso.

Gestire l’effetto di selezione del punteggio

Per ridurre questo effetto di selezione, possiamo prendere spunto dalle tecniche di campionamento utilizzate nei sondaggi. L’obiettivo di qualunque buon sondaggio è ottenere un campione rappresentativo della popolazione di interesse. Per riuscire nell’intento mantenendo il sondaggio rivolto a un numero di partecipanti facilmente gestibile, chi effettua il sondaggio deve spesso sovra-dimensionare i gruppi più sparuti, così che la struttura demografica del campione non riflette più le proporzioni effettive della popolazione. Si ovvia poi alla problematica ponderando i risultati del sondaggio in modo che il responso di ciascun partecipante ottenga un peso uguale alla sua rappresentazione all’interno della popolazione.

Possiamo usare un’idea simile per assegnare a ogni avversario identica ponderazione per tutte le combinazioni di punteggio di un game. Se prendiamo nuovamente l’esempio della parità, questo vuol dire chiedersi che prestazione avrebbe un giocatore se giocasse lo stesso numero di parità contro gli stessi giocatori con cui ha giocato in passato. Chiamerò questa statistica con il nome di punti vinti ponderati.

Punti vinti ponderati

L’immagine 2 mostra un esempio dei punti vinti al servizio sopra la media da parte di Nadal, effettivi (non ponderati) e ponderati. I punti vinti dall’avversario variano per riga nei riquadri dall’alto verso il basso. I “punti di vantaggio” lungo l’asse delle ascisse sono la differenza nei punti vinti da Nadal rispetto a quelli dell’avversario. Quindi +2 punti di vantaggio quando l’avversario è a zero significa un punteggio di 30-0.

Un aspetto estremamente interessante del grafico è dato dall’intensità nel cambiamento della prestazione di Nadal a +0 punti di vantaggio una volta introdotta la ponderazione. In assenza di ponderazione, sembra che Nadal giochi tendenzialmente sotto la media. Tuttavia, effettuata la ponderazione, sembra che questa dinamica negativa in situazioni di parità si ribalti completamente per via della variazione nella tipologia di avversari in queste combinazioni di punteggio più equilibrate. Una volta considerato questo aspetto, Nadal sembra essere molto più efficace in situazioni di parità o sulle palle break da salvare.

IMMAGINE 2 – Punti vinti al servizio sopra la media da Nadal

Curiosamente, anche dopo aver ponderato per tipologia di avversario, Nadal sembra giocare sotto la media nelle situazioni di 0-30. Questo potrebbe indicare una particolare forma di ansia per questa circostanza o uno svantaggio a essere indietro nel punteggio e servire sul lato delle parità, o una combinazione di questi due elementi.

Una classifica legata agli effetti delle situazioni di punteggio

Il precedente esempio evidenzia che i giocatori con le maggiori deviazioni dalle loro medie ponderate per avversario sono più soggetti all’effetto avversario. Ho calcolato i valori assoluti delle deviazioni di alcuni tra i più forti giocatori per vedere cosa rivelasse la classifica.

L’immagine 3 mostra che nel campione storico di partite considerato, sono Nadal e Robin Haase a emergere come i due giocatori più soggetti al punteggio. Giocatori come Roger Federer e Gilles Simon si trovano invece dal lato opposto dello spettro e mostrano un cambiamento relativamente minore nella prestazione in funzione delle situazioni di punteggio. Nel mezzo si trova un folto gruppo di giocatori che subiscono gli effetti delle situazioni di punteggio più o meno in misura simile.

IMMAGINE 3 – Classifica degli effetti delle situazioni di punteggio

Quello che è più interessante è verificare nello specifico dettaglio le dinamiche degli effetti delle situazioni di punteggio per i singoli giocatori, utilizzando una personale versione della rappresentazione ad albero Game Tree. Nell’immagine 4, mi sono concentrata su due dei giocatori con i più alti valori di effetti delle situazioni di punteggio. Haase, in arancione, dimostra di essere più efficace quando è avanti di un punto o ha gli stessi punti dell’avversario. Trovandosi invece molto indietro o molto avanti, il suo rendimento tende a calare.

IMMAGINE 4 – Effetti delle situazioni di punteggio sulla prestazione di Haase e Nishikori

Kei Nishikori si comporta in modo simile, mostrando però minore variazione rispetto a Haase quanto il suo avversario si trova a 30, a prescindere dalla distanza nel punteggio.

Non necessariamente un segno di debolezza

Analizzando gli effetti delle situazioni di punteggio attraverso queste tabelle è sempre importante ricordare che, da un lato, altri fattori oltre a quelli psicologici possono determinare differenze comportamentali (come ad esempio tattiche specifiche su situazioni di parità o di vantaggi, o di fronte a palle break). Dall’altro – valida la precedente considerazione – deviazioni dalla media non sono necessariamente un segno di debolezza. Ridurre il ritmo in determinate situazioni di punteggio, aumentarlo in altre o utilizzare tattiche che possono variare all’interno dello stesso game sono tutti aspetti in grado di produrre esiti di rendimento diversi in funzione del punteggio e rappresentare comunque un vantaggio ai fini del risultato finale.

Anche nell’impossibilità di far risalire questi effetti a una causa specifica, grazie al metodo di ponderazione illustrato, possiamo almeno avere maggiore fiducia sul fatto che gli effetti eventualmente osservati siano reali.

Il codice e i dati dell’analisi sono disponibili qui. ◼︎

Assessing Scoreboard Effects

DELLO STESSO AUTORE

Un’analisi delle partite Slam più lunghe di sempre

Pubblicato il 24 maggio 2020 su StatsOnTheT - Traduzione di Edoardo Salvati // La sospensione della stagione tennistica ha...

Il declino nella qualità degli Slam femminili 2017

Pubblicato il 30 settembre 2017 su StatsOnTheT - Traduzione di Edoardo Salvati // Nel 2016, sono state le vittorie Slam...

Di nuovo sull’uso delle statistiche della partita per classificare gli stili di gioco

Pubblicato il 12 aprile 2019 su StatsOnTheT - Traduzione di Edoardo Salvati // In un precedente articolo, ho cercato di...

Prime riflessioni sulla possibilità di elaborare una statistica WAR per il tennis

Pubblicato il 7 novembre 2015 su StatsOnTheT - Traduzione di Edoardo Salvati // La sabermetrica è l’analisi empirica...

Le giocatrici con le migliori prospettive per la prima vittoria di uno Slam a Wimbledon

Pubblicato il 22 giugno 2018 su StatsOnTheT - Traduzione di Edoardo Salvati // A pochi giorni dall’inizio di Wimbledon, analizziamo...

Quantità di gioco e probabilità di vittoria all’avvio della seconda settimana di uno Slam

Pubblicato il 17 febbraio 2020 su StatsOnTheT - Traduzione di Edoardo Salvati // Per raggiungere i quarti di finale...

Perché Serena Williams non è in nessun modo la numero 700 della classifica maschile

Pubblicato il 27 giugno 2017 su StatsOnTheT - Traduzione di Edoardo Salvati // Mentre i professionisti ultimavano la loro preparazione...

Le ripercussioni degli scontri diretti in campo maschile

Pubblicato il 15 marzo 2019 su StatsOnTheT - Traduzione di Edoardo Salvati // Nell’opinionismo tennistico, le ripercussioni legate a partite...

Le giocatrici migliori al Roland Garros 2017

Pubblicato il 10 giugno 2017 su StatsOnTheT - Traduzione di Edoardo Salvati // Manca poco alla finale femminile del Roland...

Superare la rete – Australian Open Series

Pubblicato il 5 novembre 2016 su StatsOnTheT - Traduzione di Edoardo Salvati // Il secondo articolo dell’Australian Open Series.