Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Il più grande archivio italiano di analisi statistiche sul tennis professionistico. Parte di Tennis Abstract

Valori di riferimento nell’analisi punto per punto

ULTIMI ARTICOLI

È tornata la discesa a rete?

Pubblicato il 2 ottobre 2020 su StatsOnTheT - Traduzione di Edoardo Salvati // Se guardando il Roland Garros 2020...

Venti non vuol dire sempre venti

Pubblicato il 12 ottobre 2020 su TennisAbstract - Traduzione di Edoardo Salvati // C’è sempre più traffico in cima...

La fortuna del sorteggio: Roland Garros 2020 (donne)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Come per gli uomini, anche per...

La fortuna del sorteggio: Roland Garros 2020 (uomini)

Pubblicato il 25 settembre 2020 su HiddenGameOfTennis - Traduzione di Edoardo Salvati // Da diversi anni ormai eseguo simulazioni...

Cosa succede al ritmo di gioco con le nuove regole imposte dalla pandemia

Pubblicato il 31 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // La pandemia COVID-19 ha imposto agli...

Che valore assegnamo ai tornei Masters o Premier vinti nella bolla?

Pubblicato il 30 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Il tennis è ripartito, ma molti...

Mettere un asterisco accanto agli US Open è prematuro, e forse del tutto sbagliato

Pubblicato il 19 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Ci saranno diverse assenze di alto...

Il circuito femminile post COVID-19 sta rientrando alla normalità

Pubblicato il 17 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Negli ultimi due tornei femminili, abbiamo...

Il sospetto che Venus e Serena debbano giocare contro troppo spesso è fondato?

Pubblicato il 12 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // Nel torneo di Lexington di questi...

Effetti della pandemia nel torneo di Palermo?

Pubblicato il 10 agosto 2020 su TennisAbstract - Traduzione di Edoardo Salvati // È più difficile fare previsioni sullo...

ULTIMI ARTICOLI

Pubblicato il 17 gennaio 2017 su TennisAbstract – Traduzione di Edoardo Salvati

// In un precedente articolo ho illustrato una possibile futura configurazione delle statistiche relative agli errori. Un ampio spettro di statistiche avanzate in molteplici sport, dal baseball all’hockey su ghiaccio – e progressivamente anche nel tennis – segue lo stesso algoritmo di base:

  1. raggruppare gli eventi (colpi, opportunità e qualsiasi altro) in categorie;
  2. determinale livelli attesi di prestazione o rendimento – solitamente medie del circuito – per ogni categoria;
  3. confrontare i giocatori (o i game o i tornei specifici) con quei livelli attesi di prestazione.

Il primo passaggio è di gran lunga il più complicato, perché la suddivisione in categorie dipende in larga parte dai dati a disposizione.

Nel baseball ad esempio, le statistiche di media difensiva avevano inizialmente poco margine di analisi oltre al numero di ribattute, che invece oggi possono essere raggruppate in funzione della posizione esatta, dell’angolo di lancio, della velocità di uscita dalla mazza e altro ancora.

Avere più dati non rende il compito necessariamente più facile, considerando la varietà di metodi di classificazione potenzialmente utilizzabili.

L’algoritmo che ho creato

Uno scenario simile si presenterà nel tennis se e quando, nel tempo, i dati raccolti da Hawk-Eye (o un sistema analogo) verranno resi di pubblico dominio. Per il momento, chi è interessato a fare analisi ha comunque molto materiale, in particolare i più di 1.6 milioni di colpi (a oggi più di 2 milioni, n.d.t.) raccolti grazie al Match Charting Project.

La sequenza di codifica dei colpi che ho creato per il Match Charting Project rende un passaggio dell’algoritmo relativamente immediato, perché è un sistema che classifica i colpi in due modi principali: il tipo (dritto, rovescio, rovescio tagliato, volée di dritto, etc) e la direzione (al centro o verso l’angolo destro o sinistro).

Pur tralasciando molti dettagli (profondità, velocità, rotazione, etc) si tratta del maggior numero di dati che ci si può aspettare un valutatore riesca a raccogliere in tempo reale sulla partita.

Per fare un esempio, si possono usare i dati del Match Charting Project per calcolare la media degli errori non forzati nel circuito maschile quando un giocatore prova a colpire un dritto incrociato, per poi confrontare tutti gli altri giocatori rispetto a quel valore di riferimento.

La media del circuito è del 10%, la frequenza di errori non forzati di Novak Djokovic è del 7% e quella di John Isner è del 17%. Naturalmente, non ci si può limitare a questo nel confronto tra efficacia di dritti incrociati. Se in media un giocatore del circuito ottiene un vincente dal 7% di dritti incrociati, la frequenza di Djokovic è solo del 6%, mentre quella di Isner è del 16%.

Serve una prospettiva più allargata

È necessario quindi adottare una prospettiva più allargata. Invece dei singoli colpi, credo sia di maggiore interesse analizzare le opportunità di colpo. Anziché domandarsi cosa succeda quando un giocatore è nella posizione di giocare un determinato colpo, dovremmo cercare di capire cosa accada quando quello stesso giocatore ha la possibilità di tirare un determinato colpo in una specifica zona del campo.

Questo diventa particolarmente importante se si vuole superare il fraintendimento che risiede nella distinzione tra errori forzati e non forzati (così come quello della linea di separazione tra errori e vincenti dell’avversario, frutto della stessa vicinanza interpretativa per cui i vincenti sono semplicemente colpi così ben piazzati che l’avversario non riesce nemmeno a commettere un errore forzato).

Nell’esempio con Djokovic e Isner, il denominatore era “dritti in una specifica zona del campo che il giocatore aveva una ragionevole opportunità di rimettere in gioco”, vale a dire vincenti ed errori non forzati di dritto.

In questo caso non stiamo confrontando grandezze omogenee: a parità di opportunità, Djokovic riuscirà ad arrivare su più palline, commettendo forse errori non forzati quando nella medesima circostanza considereremmo errori forzati quelli di Isner.

Esiti delle opportunità di colpo

Per esattezza, con opportunità di colpo intendo quelle definite dalla decisione di gioco presa dall’avversario, a prescindere da come il giocatore stesso riesca a replicare o se riesca anche solo ad arrivare con la racchetta sulla pallina. Ad esempio, ipotizzando che entrambi i giocatori siano destrimani, nel disegno è evidenziato un dritto incrociato.

Il giocatore A è quello che gioca il dritto e offre al giocatore B un’opportunità di colpo. Questa è una delle varie classificazioni degli esiti che potrebbero derivarne, con – tra parentesi – le abbreviazioni che ho utilizzato anche nei grafici a seguire:

  • il giocatore B non riesce a raggiungere la pallina, determinando un vincente per il giocatore A (vs V);
  • il giocatore B raggiunge la pallina, ma commette un errore forzato (EF);
  • il giocatore B commette un errore non forzato (ENF);
  • il giocatore B rimette la pallina in gioco ma finisce per perdere il turno (pi-P);
  • il giocatore B rimette la pallina in gioco, presenta al giocatore A un colpo “giocabile” e finisce per vincere il punto (pi-V);
  • il giocatore B costringe il giocatore A a commettere un errore forzato (EF ind);
  • il giocatore B colpisce un vincente (V).

Come sempre, per ogni dato denominatore si potrebbero individuare varie categorie, magari unendo errori forzati e non forzati, o scomponendo ulteriormente la tipologia “in gioco” per identificare se il giocatore si è posizionato in modo da concludere il punto velocemente. Ancora, si potrebbero analizzare categorie completamente differenti, come la selezione del colpo.

Le categorie sopra elencate forniscono comunque una valida idea generale di come i giocatori si comportino di fronte a opportunità differenti e come quelle opportunità siano di fatto diverse l’una dall’altra.

I grafici a seguire mostrano – mantenendo le sigle dell’esempio precedente – gli esiti per il giocatore B basati sui colpi del giocatore A, raggruppati solo per tipologia di colpo.

IMMAGINE 1 – Esiti di opportunità di colpo suddivisi per tipologia

Gli esiti sono messi uno sopra all’altro dal peggiore al migliore. In basso troviamo la percentuale di vincenti del giocatore A (vs V), cioè quelle opportunità in cui il giocatore B – dal cui punto di vista stiamo facendo l’analisi – non è riuscito nemmeno a raggiungere la pallina. In alto troviamo la percentuale dei vincenti (V) colpiti dal giocatore B di fronte all’opportunità di colpo.

Come ci si poteva attendere, i dritti presentano le opportunità più difficili: il 5.7% diventa un vincente e un altro 4.6% risulta in errori forzati. I giocatori sono in grado di convertire quelle opportunità in punti vinti solo il 42.3% delle volte, rispetto al 46.3% di fronte a un rovescio, al 52.5% di fronte a un rovescio tagliato o (in chip) e al 56.3% di fronte a un dritto tagliato.

Il grafico si basa su circa 347 mila colpi, cioè tutte le opportunità da fondo (esclusi i servizi, che necessitano di trattamento separato) che sono emerse in più di 1000 partite tra due destrimani presenti nel database.

Naturalmente, esistono numerosissime altre variabili per distinguere ulteriormente quei colpi del semplice raggruppamento per tipologia. L’immagine 2 mostra gli esiti delle opportunità di colpo in vari momenti dello scambio quando il giocatore A colpisce un dritto.

IMMAGINE 2 – Esiti di opportunità di colpo in vari momenti dello scambio

La colonna più a sinistra può essere letta come l’insieme dei risultati delle “opportunità di giocare un terzo colpo”, vale a dire esiti quando la risposta al servizio è un dritto. Anche in questo caso i numeri sono in linea con le attese: il momento migliore per giocare un vincente con un dritto è il terzo colpo, nella tattica chiamata “servizio più uno”.

Lo si può vedere in altro modo nella colonna adiacente, che rappresenta le opportunità di giocare un quarto colpo. Se l’avversario gioca un dritto in campo come primo colpo dopo il servizio nella tattica “servizio più uno”, c’è una probabilità del 10% che il giocatore non riesca nemmeno a raggiungere la pallina. In media, la probabilità di un giocatore di vincere il punto da quella posizione è solo del 38.4%.

Dopo il terzo e quarto colpo, ho suddiviso le opportunità in quelle a disposizione del giocatore al servizio (quinto colpo, settimo colpo e così via) e in quelle a disposizione del giocatore alla risposta (sesto, ottavo colpo, etc). Come si osserva, dal quinto colpo in avanti non c’è molta differenza, quantomeno di fronte a un dritto.

Esaminiamo un’ulteriore grafico: gli esiti delle opportunità di colpo quando l’avversario gioca un dritto in varie direzioni (sempre in una partita tra destrimani).

IMMAGINE 3 – Esiti di opportunità di colpo per dritto giocato in varie direzioni

C’è poca differenza tra i due angoli, ed è evidente che sia più semplice approfittare di una opportunità di colpo al centro del campo rispetto a ciascuno dei due angoli.

È interessante notare come di fronte a un dritto rimesso in gioco – a prescindere da dove sia mirato – il giocatore medio abbia una probabilità inferiore al 50% di vincere il punto.

Siamo in presenza di un’occorrenza di effetto (o distorsione) di selezione generante confusione e che occasionalmente si verifica nelle statistiche di tennis: visto che una percentuale importante di colpi è rappresentata da errori, il giocatore che ha colpito la pallina in campo è temporaneamente in una situazione di vantaggio.

Passi successivi

Se vi steste domandando quale sia il senso di tutto questo, posso capire (e apprezzo il fatto che abbiate letto sin qui nonostante i vostri dubbi). Senza prima arrivare all’analisi di situazioni molto più specifiche – e forse nemmeno in quel caso – queste medie del circuito non sono più che curiosità.

Mostrare che un dritto ha più efficacia che un rovescio tagliato o che tirare agli angoli del campo è più produttivo che mirare al centro certamente non rivoluziona l’analisi statistica nel tennis.

In definitiva, queste medie sono solo uno strumento per quantificare con maggiore dovizia il rendimento di determinati giocatori.

L’esplorazione di algoritmi come questo, unita all’incremento dei dati raccolti con il Match Charting Project (che ha da poco superato le 3600 partite totali, n.d.t.), permetterà di conoscere meglio le dinamiche di gioco dei migliori del mondo, e quali aspetti li rendano così tanto più bravi di tutti gli altri. ◼︎

Benchmarks for Shot-by-Shot Analysis

DELLO STESSO AUTORE

Tre semplici accorgimenti per migliorare il sistema di classifica dell’ATP

di Jeff Sackmann // TennisAbstract Pubblicato il 30 marzo 2012 - Traduzione di Edoardo Salvati

Il futuro è roseo per Aryna Sabalenka

Pubblicato il 13 ottobre 2018 su TennisAbstract - Traduzione di Edoardo Salvati // Sono passate quasi due settimane dall’ultimo titolo...

La convergenza tra la velocità delle superfici: un’illusione

Pubblicato l’8 aprile 2013 su TennisAbstract - Traduzione di Edoardo Salvati // Rafael Nadal ha vinto l’Indian Wells...

Quanto è forte Cori Gauff al momento?

Pubblicato il 7 luglio 2019 su TennisAbstract - Traduzione di Edoardo Salvati // Cori Gauff, la quindicenne rivelazione di Wimbledon...

Cosa succederebbe se la WTA introducesse il super-tiebreak nei singolari?

Pubblicato il 12 ottobre 2016 su TennisAbstract - Traduzione di Edoardo Salvati // È di nuovo di attualità:...

La probabilità di doppi decisivi nella nuova Coppa Davis

Pubblicato il 28 novembre 2019 su TennisAbstract - Traduzione di Edoardo Salvati // Nel nuovo formato della Coppa Davis,...

L’impatto negativo del tempo trascorso in campo

Pubblicato il 2 giugno 2017 su TennisAbstract - Traduzione di Edoardo Salvati // C’è stata solo una partita tra le...

Around the Net, numero 1 e 2

Pubblicato il 16 e il 23 febbraio 2019 su TennisAbstract - Traduzione di Edoardo Salvati // Around the Net è...

Quale torneo assegna wild card competitive? – Gemme degli US Open

Pubblicato il 26 ottobre 2012 su TennisAbstract - Traduzione di Edoardo Salvati // Il settimo articolo della serie...

Guida alle simulazioni predittive

Pubblicato il 6 agosto 2012 su TennisAbstract - Traduzione di Edoardo Salvati // Uno degli strumenti che più...